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Abstract. The transfer matrices of solvable lattice spin models are considered under general 
boundary conditions associated with the symmetry of the models. It is shown how the full 
symmetry can be exploited for systems having a sublattice symmetry by considering an 
extended model where the states distinguish the sublattices. In this extended scheme, the 
parity of the number of sites is tied to the boundary conditions. The inversion identities 
can be extended and be used to obtain the full operater content of the critical models. As 
an application the complete spectra of the transfer matrices for the eight-vertex model at 
the decoupling point are calculated. 

1. Introduction 

There are now several infinite series of solvable classical lattice spin models (Andrews 
et a1 1984, Date et a1 1986, 1987, Pasquier 1987a, b,c, Kuniba and Yajima 1988a, 
Pearce and Seaton 1988, Jimbo et a1 1988a, b). In these models, the Boltzmann face 
weights satisfy the Yang-Baxter equation (YBE) and the row-to-row transfer matrices 
form a commuting family parametrised by the spectral parameter U (Baxter 1982). At 
criticality these models realise the conformally invariant quantum field theories in the 
continuum limit (Cappelli et a1 1987, Christe and Ravanini 1988). The central charge 
and the conformal dimensions of the scaling operators of the theory can be determined 
from eigenvalues of the transfer matrices (Cardy 1986a). 

Since this information about the operator content comes from the finite-size correc- 
tions, they are sensitive to the boundary conditions (BC). To expose the full operator 
content of the theory, it is then necessary to consider all the possible BC associated 
with the symmetry of the model (Cardy 1986b, Rittenberg 1988). When the models 
possess the sublattice symmetry in the sense defined later, the extra symmetry can be 
profitably exploited by considering corresponding extended models where the spin 
states carry an extra index associated with the sublattices. In the next section we 
discuss the row-to-row transfer matrices under general BC. We observe that the local 
YBE implies a one-parameter family of commuting transfer matrices for each BC, 
guaranteeing the solvability of the model for all BC on an equal footing. Then we 
show how the sublattice symmetry can be handled. 
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The eigenvalues of the transfer matrix may be calculated by using the special 
functional equations called the inversion identities, satisfied by many solvable models. 
So far the list of models for which the inversion identities are derived include the Ising 
model (Baxter 1982), the hard hexagon and the interacting hard square models (Baxter 
and Pearce 1982, 1983), the eight-vertex model (Pearce 1987a), the self-dual Potts and 
the Ashkin-Teller models (Pearce 1987b), the magnetic hard square model (Pearce 
1985, Pearce and Kim 1987), the restricted SOS models and their fusion hierarchies 
(Bazhanov and Reshetikhin 1989), and the cyclic SOS models (Pearce and Seaton 1988). 
(Reshetikhin (1983) considered the inversion identities for the vertex models.) The 
inversion identities almost completely determine all the zeros of eigenvalues in the 
complex U plane and hence the complete eigenvalue spectra. Furthermore since these 
functional equations hold for all finite systems, they can be used to determine the 
operator content either numerically or analytically. The works mentioned above dealt 
exclusively with the periodic BC. In this paper ( 0  3) we show that the inversion identities 
can be extended to general cases where the BC associated with the symmetry of each 
model are imposed. 

As an application of the formalism developed in 00 2 and 3, we consider the 
eight-vertex model at the decoupling point in § 4. By imposing the general BC, we are 
able to probe the full dihedral D, symmetry of the model. All the eigenvalues are 
determined exactly for all BC. From this we obtain the full operator context explicitly. 
The result is then matched to that of the Ashkin-Teller model obtained numerically 
by Baake et a1 (1987), thereby associating each BC of the eight-vertex model with one 
of the Ashkin-Teller model. 

2. Transfer matrix, symmetry and the extended scheme 

Let us consider a square lattice of M rows and N columns wrapped on a torus and 
associate with each site i a spin variable ai that takes on values in the set S of the 
spin states. The interaction-round-a-face ( IRF) model assumes interactions only 
between spins around a common face (Baxter 1982). The Boltzmann face weight is 
denoted by W(a,  6, c, d I U), where a, b, c and d are the four spins on a face taken in 
anticlockwise order starting at the lower left comer, and where U is the spectral 
parameter that describes the anisotropy of interactions (Kim and Pearce 1987). The 
symmetry group G of the model is a group of permutations g on the spin-state set S 
which leave the face weight invariant; thus we have 

W ( W ,  gb, gc, gd I U )  = W a ,  b, c, d I U )  (2.1) 
for all a, b, c, d E S and for all g E G. This is illustrated in figure 1. (In some models, 
the symmetry at off-criticality is lower than that at criticality.) 

For each g E G, we define the row-to-row transfer matrix T g ( u )  with elements 
N 

(ulTg(u)lu')= n W(aj ,  a j + l ,  aj+1, vjlu) (2.2) 
j = 1  

Figure 1. Graphical representation of equation (2.1) 



Solvable models with a sublattice symmetry 1663 

where the row configurations U = (al, . . . , u N )  and U’ = (U:, . . . , (TA)  satisfy the BC 

U N t l  g‘l uA.-* = gc.:. (2.3) 

For many models, there are adjacency conditions which allow only certain pairs of 
elements in S to occupy adjacent sites. In this case we assume U and U‘ are the 
allowed configurations. The standard initial condition 

W ( a ,  b, c, d I U = 0 )  = 8(a ,  c )  

Tg( U = 0) = c, 

(2.4) 

(2.5) 

yields 

where the translation (cyclic shift) operator C, is defined by 

with c.Lt l=gc.: .  The BC g lowers the symmetry of the system and the symmetry 
group of the T,(u) is given by 

G ,  = W E  GI g g ’ =  g ‘ g >  (2.7) 

which is a subgroup of G.  Two transfer matrices T g ( u )  and T J u )  have the same 
spectrum if g and g‘  belong to the same conjugacy class in G. Not so often emphasised 
in the literature is that the usual YBE (see figure 2 ( a ) )  is sufficient for the commutativity 
of transfer matrices 

[ T g ( u ) ,  Tg(u‘) l= 0 (2.8) 
for any BC g as well as for the periodic BC. This follows from the fact that the YBE 

and the symmetry (2.1) imply 

c W(b,gc,gh,  a l u ) W ( a , g h , g e , f l u ’ ) W ( h ,  c, d, e lu’ -U)  
h 

= c W ( a ,  b, hfl U’- U )  W ( b ,  gc, gd, h I U‘) W ( h ,  gd, ge,fl  U )  (2.9) 
h 

for all a, b, c, d, e, f, h E S and for all g E G. This is illustrated in figure 2. (See de Vega 
(1984) for a similar idea in vertex models with continuous symmetries.) Hence the 
solvability applies to all possible BC associated with the symmetry of the model on an 
equal footing. 

For some models, the symmetries discussed above are not sufficient. For example, 
let us consider the eight-vertex (in IRF version) and the magnetic hard square models. 
These models are in the same universality class as the Ashkin-Teller model (Kadanoff 
and Brown 1979, Pearce and Kim 1987, Kim er al 1988). The symmetry group of the 
latter as defined in (2.1) is D4 whereas it is only Z2 for the former models. This 

Figure 2. (a )  The usual YBE. The spin on the solid circle is summed over. ( b )  Graphical 
representation of equation (2.9). Note that figures 1 and 2 ( a )  imply figure 2 ( b ) .  
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discrepancy can be resolved by noting the additional sublattice symmetries in the 
former models. 

Suppose the face weight W has the sublattice symmetry, by which we mean 

W a ,  b, c, d I U )  = Wga, b, gc, d I U )  
= W(a, gb, c, gd I U )  (2.10) 

for all a, b, c, d E S and for all g E G .  We define a corresponding extended model by 
assigning an extra ‘sublattice’ index ai = 0, 1 to each site i. We denote by Gi = (ai, a i )  
the spin state at site i. We then define the face weight of the extended model by 

* (G i ,  Gj, Gk, 61 1 U )  
= w((Ti, q, (Tk ,  ol )u)b(a i@l ,  aj)a(ai@l,  0,) 

x S(UjOl, ak)a(a,@l,  ak) (2.11) 

where 0 represents addition modulo 2. The adjacency condition imposed by the 
Kronecker delta functions in (2.11) ensures that all sikes in one sublattice carry the 
same sublattice index. If W satisfies the YBE, so does W due to the delta factors. We 
shall refer to the original (extended) model as the reduced (extended) scheme. Now 
for the symmetry group elements of kk, we consider g’= (go, g,, m) where go, g, E G 
and m E Z2 = (0 , l ) .  The action of g’ on a state 6 = (a, a )  is defined by 

g’6 = (g-a, a 0 m). (2.12) 

Then the group multiplication law deduced from (2.12) is 

E’ = (gm,gA, grn,olg;, m e  “1 (2.13) 

where g’‘= (gA, g;, m’). The symmetry group 6 for 6’ composed of g’ with such a 
multiplication law is called the wreath product of G with Z2 and is denoted by 

6 = G - Z 2  (2.14) 

(Marcu er a f  1981). For the eight-vertex and the magnetic hard square models with 
G = Z2 we obtain 6 = D4. Hence the full symmetry of these models can be exploited 
by using the extended scheme. 

We next consider the structure of transfer matrices in the extended scheme. Consider 
a row of N spins G = (G1,. . . , G N ) .  It is sufficient to consider two classes of configur- 
ations: 

aj =f(1 -(- lY) 

(ii) aj=;(l+(-lY’) 
j = 1, . . . , N. 

(i)  
(2.15) 

The row-to-row transfer matrix f i ( u )  in the extended scheme is defined as before by 

(2.16) 
N 

(&.ITi(U)lG.’)= n *(6j,  6j+l, 6;+l, 6J#) 
j = 1  

with the BC 6N+1 = and &&+, = g’6:. The matrix f i ( u )  has the block structure 

(2.17) 

(2.18) 
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with the mixed BC vN+, = go crl and (+IN+, = glai .  The YBE implies that the f i ( u )  form 
a commuting family. Using (2.17), we then have the quasicommutation relations 

(2.19) TgO,B, ( U )  Tk-,,d U’) = Tk-o,s, ( U’) =k-,,sO(u) 
for the transfer matrices in the reduced scheme. We note the consistency condition 

N = m (mod 2). (2.20) 

Hence the parity of the number N of sites in a row is tied to the boundary conditions. 
This phenomenon was noted by Kim et a1 (1988), who observed that the operator 
content of the magnetic hard square model under the periodic BC with odd N is 
accounted for by that of the Ashkin-Teller model in which the antiperiodic BC is 
imposed on one of the Ising variables. 

The eight-vertex and the magnetic hard square models in the extended scheme can 
be represented by the adjacency diagrams in figure 3 where each vertex (open circle) 
corresponds to a spin state and two states can occupy nearest-neighbour sites if they 
are connected by an edge in the diagrams. Pasquier (1987a, b, c) considered models 
based on the Dynkin or Coxeter diagrams of simply-laced classical and affine Lie 
algebras. Among them, A,,  A~?l(= .&- . l )  and (=6,-,) models with even n can 
be interpreted as extended schemes for the corresponding (n/2)-state models. In fact, 
the n-state model defined in Akutsu et a1 (1986) and the 2n-state model in Kuniba 
and Yajima (1988a) are the reduced and the extended schemes, respectively, of the 
same model Dlf)-l. The smallest member, the DI” model, corresponds to the magnetic 
hard square model discussed above. Andrews er a1 (1984) introduced and solved the 
n-state eight-vertex SOS model A, ( n  = r - 1 in their notation). The lattice-gas rep- 
resentation they proposed for even n is the reduced scheme in our terminology. In 
particular, the & model corresponds to the interacting hard square model (Baxter and 
Pearce 1983) and the significance of the parity of N in this model was noted by Kim 
(1988). The models correspond to the cyclic SOS models (Pearce and Seaton 
1988, Kuniba and Yajima 1988b). Even though the eight-vertex and the AY) models 
have the same adjacency diagram, their face weights take different forms. 

(0 1 ( b )  

Figure 3. The adjacency diagrams of ( a )  the eight- 
vertex model and (b)  the magnetic hard square model 
in the extended scheme. The spin state (U, a) corre- 
sponding to each vertex is shown. 

(0,2) (011 

(1J) A I0,O) (1,21 

Figure 4. The diagram characterising the spin states 
and the adjacency condition for the hard hexagon 
model. 

The Z2 factor in (2.14) can sometimes be generalised to Z,. Then the 0 in 
(2.11)-(2.13) denotes addition modulo v with the corresponding change in (2.15), 
(2.17) and (2.20). A simplest example is the hard hexagon model. Kim (1988) observed 
that m plays the role of Z3 BC where N = m (mod 3 ) .  This is explained by the extended 
face weight fi given in (2.11) where 0 is addition modulo 3. The corresponding 
adjacency diagram is a directed graph shown in figure 4 (see Jimbo et a1 1988a, Pasquier 
1988). 
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3. Inversion identities for the eight-vertex model 

In this section, for definiteness, we will describe how the inversion identities of the 
eight-vertex model under the periodic BC (Pearce 1987a) are generalised for all possible 
BC. Other models referred to in P 1 (in connection with the inversion identities) have 
similar extensions. We will denote, for example, by (P5a) the equation (sa) in Pearce 
(1987a). 

Equation (P2) defines the face weight for the eight-vertex model in the reduced 
scheme. The expression (P3) is replaced by (2.18) where go, g l E G = { + l ,  - l}=Z2.  
We have instead the relations 

Tgo,gl(A - U )  = 7-;l,go(4 ( 3 . 1 ~ )  

Tg0,g1( U = 0) = cg, (3.lb) 

Tgo,gl(u = A 1 = c;: ( 3 . 1 ~ )  

where the transition (cyclic shift) operators C, are defined in (2.6). Instead of (P4u) 
we write 

(Cl Tg0,g1( U )  Tg1,g0(U + A )I U') 

(3.4) 

where Pgo,gI( U )  are auxiliary matrices whose elements are entire functions of U. 

unless go = g, (see (2.19)). But in the extended scheme (3.6) are translated into 
The identities (3.6) contain non-commuting matrices and themselves are not useful 

Ti( U )  Ti( U + A ) = cp ( A  + U)(O ( A  - u ) i  + cp ( U )  4( U )  

where f i ( u )  are defined in (2.16) and where 
.. 
I = diag( I, I)  

5i( U 1 = d iad  Pg1.g0( U ), pgo.gl( U 1 ). 

(3 .7)  

(3.8) 
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Then (3.lb) and ( 3 . 1 ~ )  become - - 
T,(U = O )  = c, f , ( u = A ) = C g ’  

where 

S.=[p, >] 

(3.9) 

(3.10) 

Since the T,(U) form a commuting family, the inversion identities (3.7) can be used 
to obtain the eigenvalue spectra for all BC associated with the D4 symmetry. In the 
next section, the complete eigenvalue spectra and the operator content are calculated 
at the decoupling point. 

4. Eight-vertex model at the decoupling point 

As an application of the formalism developed in 0 2, we consider the eight-vertex 
model at the decoupling point or the doubled Ising model with the face weight 

W ( a ,  b, c, d 1 U )  = exp(-K - L )  exp(Lac+ K b d )  (4.1) 
where a, b, c, d = *l. The prefactor exp(-K - L )  is introduced for later convenience. 
W satisfies (2.10) with G = {+l ,  -1} = Z2.  We are interested in the operator content 
and work in the critical manifold. With the parametrisation 

exp(2K) = (1 +sin u)/cos U 

exp(2L) = (1 +cos u)/sin U 
(4.2) 

(Baxter 1982), W satisfies the YBE. 

Following Baxter (1982), we obtain the inversion identities 

Tgo,g,(u) T g , , g o ( U  + .rr/2) 
=f(u)[(2 cot ~ ) ~ / ~ Z + g ~ ( - 2  tan U ) ” ” ~ R ~ ]  

x[(2cot  u)”’Z+go(-2 tan u ) ~ ” R , ]  (4.3) 
for even N, and 

T g o . g , ( U ; T g , , g o ( U + ~ / 2 ) = f ( U ) [ ( 2 C O t  u)”I+g0gl(-2tan ulNR1 (4.4) 
for odd N. Here and below 

f ( u )  =[tan (u/2)IN. 

The spin-reversal operator R and the sublattice-spin-reversal operators Ro and RI are 
defined by 

The inversion identity (4.4) with go = g, = +1 was obtained by Pearce (1983). 
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In the extended scheme, we work with the transfer matrices fi defined in (2.16) 
or (2.17) with g’= (go, g, ,  m )  and with 

6,  = diag( Ro, R I )  
d = diag(R, R )  

6,  = diag( R I ,  Ro) - (4.6) 
I = diag( I, I). 

The inversion identities (4.3) and (4.4) are translated into 
fg( U )  fg( U + 77/2) 

=f(u)[(2 cot u)””i+g0(-2 tan U)”/’I?~I 
x [(2 cot u)“I2i+g1(-2 tan u ) ” / ~ ~ , I  

f g ( u ) f g ( u  + 77/21 =f(u)[(2 cot u)Ni+gOgl(-2 tan u ) ” d ]  

(4.7) 

(4.8) 

for m = 0 ( N  = even) and 

for m = 1 ( N  = odd). These identities consist of mutually commuting matrices so they 
are satisfied for ea_ch eigenvalue. Denote by &(U), io and i1 the eigenvalues of 
?.,(U), I?, Eo and R I ,  respectively. 

We first consider even N. Proceeding as in Baxter (1982), we obtain the expression 
N - Yo- VI 

A g ( u )  = ~F(u)[N’ / ’  exp(i ~ / 4 + i u ) ] ” o + ” ~  n [exp(2iu)+iyj tan(ej/2)] (4.9) 

1 -2(1-g,L;) 

j = 1  

where 
-1 -1 0-2(1 -goto) 

e N / 2 - v 0 + j =  (2 r /N)[ j -5(1  - V I ) ]  

e, = ( 2 7 7 / ~ ) [ j - 5 ( 1 -  uO)]  j = l ,  . . . , (  N / 2 ) - u 0  (4.10) 

j =  1 , .  . . , (N/2 ) -  VI. 

Here yj = *l can be chosen independently only with restrictions 
N/2 

j = l  
Il yj=go if uo = 0 

(4.1 1) 

In (4.9), 

exp(ir/2)(exp(iu) - l)(exp(iu) -i) 
23/2 exp(2iu) sin U cos U 

F(u) = (4.12) 

From (4.9) one can extract the central charge c = 1 and the operator content (Cardy 
1986a, Kim and Pearce 1987). We denote by Xc,h(q) the character for an irreducible 
representation of the Virasoro algebra { L , }  of central charge c with the highest weight 
h. Then the operator content 2A;$l(q) = Tr qLoijLo under the boundary condition 
g’ = (go, g , ,  m = 0) in the sector with quantum numbers F0 and 

zk;Q:(q) = z;(q)Z:;(q) (4.13) 
where Z:(q) and Z;(q) are the operator content of the Ising model under the BC g 
in the Z2 even and odd sectors, respectively: 

is found to be 

Z3q)  = x1,2,o(q)x1/2,o(~) + x1/2,1/2(q)x1/2.1,*(~) 
Z J q )  = x1/2,o(q)x1/2,1/2(a + x1/2,1/2(q)x1,2.o(a (4.14) 

z ; (q )  = zT(q) = X l / t . l / l 6 ( ~ ) X 1 / 2 . 1 / 1 6 ( ~ )  
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(Cardy 1986b). From (4.13) it is obvious that the operator content under these four 
BC ( m  = 0) is described by the direct sum of two commuting Virasoro algebras with 
c = f ,  as is expected. Using the result of Baake (1988) we can rewrite (4.13) in terms 
of the characters X 1 . h .  Based on a numerical analysis of the Ashkin-Teller quantum 
chain, Baake et a1 (1987) (see also Rittenberg 1988) obtained the operator content of 
the various sectors for the eight BC corresponding to the D4 symmetry. By comparing 
our result with theirs, we can then associate each BC of the eight-vertex model with 
one of the Ashkin-Teller model. This is shown in table 1 .  

Table 1. The correspondence of boundary conditions and sectors between the even-N 
eight-vertex and the Ashkin-Teller models. See Baake et al (1987) for the notations Z I C k  
and d, 3, etc. 

Boundary conditions Sectors 

(go, g,) PICk (+, +) (-, -1 (+, -1 ( - 9  +) 

We now consider odd N. We find that the eigenvalues of the transfer matrix f i (  U )  
are given by 

N - ”  

&(U) = 21’2F(u)[2N e x p ( i ~ / 2 + 2 i u ) ] ” ’ ~  n [exp(2iu)+iyj tan(Oj/2)] 
j = l  

(4.15) 

where 

v = f( 1 - g,g, ?) 

O , = ( v / N ) [ j - f ( l - v ) ]  j = l ,  . . . ,  N-v. (4.16) 

The yj = *1 can be chosen independently with the restriction 

N 

Jl yj=gogl if v = 0. (4.17) 

The operator content ZLo,gl(q) under the BC g’= (go, g , ,  m = 1 )  in the sector with 
quantum number r‘ is given by 

j = 1  

(4.18) 

The operator content under these four BC ( m  = 1)  is described by the Virasoro algebra 
in = fL,, + &6( n, 0) where the L, generate a Virasoro algebra of c = f (Baake 1988). 
The correspondence with the result of Baake et a1 (1987) (see Rittenberg 1988) is 
shown in table 2. 
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Table 2. The correspondence of boundary conditions and sectors between the odd-N 
eight-vertex and the Ashkin-Teller models. The notation is the same as in table 1. 

Boundary conditions Sectors 

- ( g o ,  g , )  PICk + 
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